Second order Lyapunov exponents for parabolic and hyperbolic Anderson models
نویسندگان
چکیده
منابع مشابه
Lyapunov Exponents for the Parabolic Anderson Model
We consider the asymptotic almost sure behavior of the solution of the equation u(t, x) = u0(x) + κ ∫ t
متن کاملLyapunov Exponents for the Parabolic Anderson Model
We consider the asymptotic almost sure behavior of the solution of the equation u(t, x) = u0(x) + κ ∫ t
متن کاملLyapunov Exponents for Unitary Anderson Models
We study a unitary version of the one-dimensional Anderson model, given by a five diagonal deterministic unitary operator multiplicatively perturbed by a random phase matrix. We fully characterize positivity and vanishing of the Lyapunov exponent for this model throughout the spectrum and for arbitrary distributions of the random phases. This includes Bernoulli distributions, where in certain c...
متن کاملLyapunov exponents in continuum Bernoulli-Anderson models
We study one-dimensional, continuum Bernoulli-Anderson models with general single-site potentials and prove positivity of the Lyapunov exponent away from a discrete set of critical energies. The proof is based on Fürstenberg’s Theorem. The set of critical energies is described explicitly in terms of the transmission and reflection coefficients for scattering at the single-site potential. In exa...
متن کاملLyapunov Exponents of Second Order Linear Systems
In this paper we describe the maximal and the minimal values of Lyapunov exponents for second order discrete time invariant linear system perturbed by time varying bounded perturbation. The results may be interpreted in terms of generalized spectral radius and applied to obtained formulas for robust stability problem. Key-Words: Time varying discrete linear systems, Lyapunov exponents, robust s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2019
ISSN: 1350-7265
DOI: 10.3150/18-bej1080